Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 725
Filtrar
1.
Nanoscale ; 16(16): 7965-7975, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38567436

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that mostly affects joints. Although RA therapy has made significant progress, difficulties including extensive medication metabolism and its quick clearance result in its inadequate bioavailability. The anti-inflammatory effect of zein was reported with other medications, but it has certain limitations. There are reports on the anti-oxidant and anti-inflammatory effect of aescin, which exhibits low bioavailability for the treatment of rheumatoid arthritis. Also, the combinatorial effect of zein with other effective drug delivery systems is still under investigation for the treatment of experimental collagen-induced rheumatoid arthritis. The focus of this study was to formulate and define the characteristics of zein-coated gelatin nanoparticles encapsulated with aescin (Ze@Aes-GNPs) and to assess and contrast the therapeutic effectiveness of Ze@Aes-GNPs towards collagen-induced RA in Wistar rats. Nanoprecipitation and the layer-by-layer coating process were used to fabricate Ze@Aes-GNPs and their hydrodynamic diameter was determined to be 182 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to further validate the size, shape, and surface morphology of Ze@Aes-GNPs. When tested against foreskin fibroblasts (BJ), these nanoparticles demonstrated significantly high cytocompatibility. Both Aes and Ze@Aes-GNPs were effective in treating arthritis, as shown by the decreased edoema, erythema, and swelling of the joints, between which Ze@Aes-GNPs were more effective. Further, it was demonstrated that Aes and Ze@Aes-GNPs reduced the levels of oxidative stress (articular elastase, lipid peroxidation, catalase, superoxide dismutase and nitric oxide) and inflammatory indicators (TNF-α, IL-1ß and myeloperoxidase). The histopathology findings further demonstrated that Ze@Aes-GNPs considerably reduced the infiltration of inflammatory cells at the ankle joint cartilage compared to Aes. Additionally, immunohistochemistry examination showed that treatment with Ze@Aes-GNPs suppressed the expression of pro-inflammatory markers (COX-2 and IL-6) while increasing the expression of SOD1. In summary, the experiments indicated that Aes and Ze@Aes-GNPs lowered the severity of arthritis, and critically, Ze@Aes-GNPs showed better effectiveness in comparison to Aes. This suppression of oxidative stress and inflammation was likely driven by Aes and Ze@Aes-GNPs.


Assuntos
Artrite Experimental , Escina , Gelatina , Nanopartículas , Ratos Wistar , Zeína , Animais , Gelatina/química , Zeína/química , Ratos , Nanopartículas/química , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Experimental/metabolismo , Escina/química , Escina/farmacologia , Masculino , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Artrite Reumatoide/metabolismo , Humanos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/patologia , Colágeno/química
2.
Int J Biol Macromol ; 264(Pt 2): 130679, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462110

RESUMO

Breast cancer is a major cause of death in women worldwide leading to requirement of new therapeutic strategies. Silymarin demonstrated the anti-cancer activity however, due to low bioavailability its use is restricted. This study aimed to improve the solubility of silymarin by developing a silymarin loaded zein nanoparticles (SLNPs) which was stabilized by beta cyclodextrin. Comprehensive physiochemical characterization studies based on DLS, FTIR, UV-Vis Spectroscopy, FE-SEM, TEM, XRD, DSC, NMR and TGA confirmed the successful synthesis of SLNPs via an anti-solvent precipitation method. FE-SEM and TEM images demonstrated the uniform size and spherical shape of nanoparticles with encapsulation and loading efficiencies of 84.32 ± 1.9 % and 15.25 ± 2.4 % respectively. The zein protein interaction with silymarin, and ß-cyclodextrin was shown to be beneficial via the use of molecular simulations and binding energy calculations. Cellular studies demonstrated dose and time dependent cytotoxicity of SLNPs on MCF-7 breast cancer cell. FACS, qRT-PCR and Western blotting showed Bax (pro-apoptotic) upregulation while Bcl-2 (anti-apoptotic) downregulation. Our findings suggest that these loaded nanoparticles are more efficient than pure drug, enhancing its bioavailability and paving the path for developing it as a promising nutraceutical to treat breast cancer.


Assuntos
Neoplasias da Mama , Nanopartículas , Silimarina , Zeína , Feminino , Humanos , Silimarina/farmacologia , Silimarina/química , Zeína/química , Simulação de Acoplamento Molecular , Neoplasias da Mama/tratamento farmacológico , Nanopartículas/química , Tamanho da Partícula
3.
Food Chem ; 446: 138286, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428073

RESUMO

We successfully designed curcumin (Cur)-loaded composite nanoparticles consisting of high-hydrostatic-pressure-treated (HHP-treated) zein and pectin with a pressure of 150 MPa (zein-150 MPa-P-Cur), showing nano-spherical structure with high zeta-potential (-36.72 ± 1.14 mV) and encapsulation efficiency (95.64 ± 1.23 %). We investigated the interaction mechanism of the components in zein-150 MPa-P-Cur using fluorescence spectroscopy, molecular dynamics simulation, Fourier-transform infrared spectrometry and scanning electron microscopy techniques. Compared with zein-P-Cur, the binding sites and binding energy (-53.68 kcal/mol vs. - 44.22 kcal/mol) of HHP-treated zein and Cur were increased. Meanwhile, the interaction force among HHP-treated zein, pectin, and Cur was significantly enhanced, which formed a tighter and more stable particle structure to further improve package performance. Additionally, Cur showed the best chemical stability in zein-150 MPa-P-Cur. And the bioavailability of Cur was increased to 65.53 ± 1.70 %. Collectively, composite nanoparticles based on HHP-treated zein and pectin could be used as a promising Cur delivery system.


Assuntos
Curcumina , Nanopartículas , Zeína , Pectinas/química , Curcumina/química , Zeína/química , Nanopartículas/química , Espectrofotometria Infravermelho , Tamanho da Partícula
4.
Food Chem ; 446: 138512, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428085

RESUMO

Pickering emulsion loading essential oil has demonstrated a promising strategy as delivery system in food preservation, but localization in stability and antimicrobial activity limits application. In this study, Pickering emulsions co-loaded with tannic acid and cinnamon essential oil (ZTC) have been developed based on zein and tannic acid complexes (ZT) mediated interfacial engineering. Fourier transform infrared, fluorescence spectroscopy, and molecular docking results indicated tannic acid altered the structural of zein. Interfacial tension results indicated that tannic acid accelerated the adsorbed speed of zein particles by decreased interfacial tension (11.99-9.96 mN/m). ZT5 formed a viscoelastic and dense layer in oil-water interface than that for other ZTs, which improved stability and control release performance of ZTC. Furthermore, the ZTC showed an effective antimicrobial activity against spoilage organisms Pseudomonad paralactis MN10 and Lactobacillus sakei VMR17. These findings provide new insight for developing co-loaded multiple antimicrobial agents within Pickering emulsion as a delivery system.


Assuntos
Anti-Infecciosos , Nanopartículas , Óleos Voláteis , Polifenóis , Zeína , Óleos Voláteis/farmacologia , Emulsões/química , Zeína/química , Cinnamomum zeylanicum , Preparações de Ação Retardada , Simulação de Acoplamento Molecular , Anti-Infecciosos/farmacologia , Tamanho da Partícula , Nanopartículas/química
5.
ACS Biomater Sci Eng ; 10(4): 1946-1965, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38427627

RESUMO

Various nanomaterials have recently become fascinating tools in cancer diagnostic applications because of their multifunctional and inherent molecular characteristics that support efficient diagnosis and image-guided therapy. Zein nanoparticles are a protein derived from maize. It belongs to the class of prolamins possessing a spherical structure with conformational properties similar to those of conventional globular proteins like ribonuclease and insulin. Zein nanoparticles have gained massive interest over the past couple of years owing to their natural hydrophilicity, ease of functionalization, biodegradability, and biocompatibility, thereby improving oral bioavailability, nanoparticle targeting, and prolonged drug administration. Thus, zein nanoparticles are becoming a promising candidate for precision cancer drug delivery. This review highlights the clinical significance of applying zein nanosystems for cancer theragnostic─moreover, the role of zein nanosystems for cancer drug delivery, anticancer agents, and gene therapy. Finally, the difficulties and potential uses of these NPs in cancer treatment and detection are discussed. This review will pave the way for researchers to develop theranostic strategies for precision medicine utilizing zein nanosystems.


Assuntos
Antineoplásicos , Neoplasias , Zeína , Humanos , Portadores de Fármacos/uso terapêutico , Zeína/química , Sistemas de Liberação de Medicamentos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico
6.
J Agric Food Chem ; 72(9): 4928-4938, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38393975

RESUMO

Sliver nanoparticles (AgNPs) have attracted tremendous interest as an alternative to commercially available antibiotics due to their low microbial resistance and broad-spectrum antimicrobial activity. However, AgNPs are highly reactive and unstable and are susceptible to fast oxidation. Synthesizing stable and efficient AgNPs using green chemistry principles remains a major challenge. To address this issue, we establish a facile route to form AgNP-doped zein nanoparticle core-satellite superstructures with ultralow minimum bactericidal concentration (MBC). In brief, polyphenol surface-functionalization of zein nanoparticles was performed, and the epigallocatechin gallate (EGCG) layer on zein nanoparticles served as a reducing-cum-stabilizing agent. We used EGCG-decorated zein nanoparticles (ZE) as a template to direct the nucleation and growth of AgNPs to develop metallized hybrid nanoparticles (ZE-Ag). The highly monodispersed core-satellite nanoparticles (∼150 nm) decorated with ∼4.9 nm AgNPs were synthesized successfully. The spatial restriction of EGCG by zein nanoparticles confined the nucleation and growth of AgNPs only on the surface of the particles, which prevented the formation of entangled clusters of polyphenols and AgNPs and concomitantly inhibited the coalescence and oxidation of AgNPs. Thus, this strategy improved the effective specific surface area of AgNPs, and as a result, ZE-Ag efficiently killed the indicator bacteria, Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus(MRSA) after 20 min of incubation, with MBCs of 2 and 4 µg/mL, respectively. This situation indicated that as-prepared core-satellite nanoparticles possessed potent short-term sterilization capability. Moreover, the simulated wound infection model also confirmed the promising application of ZE-Ag as an efficient antimicrobial composite. This work provides new insights into the synthesis and emerging application of AgNPs in food preservation, packaging, biomedicine, and catalysis.


Assuntos
Anti-Infecciosos , Catequina/análogos & derivados , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Nanocompostos , Zeína , Zeína/química , Prata/farmacologia , Prata/química , Escherichia coli , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Polifenóis/farmacologia , Excipientes , Testes de Sensibilidade Microbiana
7.
Food Funct ; 15(5): 2563-2576, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38353040

RESUMO

In this work, a zein-tamarind seed polysaccharide (TSP) co-delivery system was fabricated using an anti-solvent precipitation method. The formation mechanism, characterization, and effect on alleviating colitis and gut microbiota dysbiosis in mice of zein-TSP-curcumin (Z/T-Cur) nanocomplexes were investigated. Hydrogen bonding and the hydrophobic effect played a key role in the formation of Z/T-Cur nanocomplexes, and the interactions were spontaneous and driven by enthalpy. The encapsulation efficiency, loading capacity, and bioavailability increased from 60.8% (Zein-Cur) to 91.7% (Z/T-Cur1:1), from 6.1% (Zein-Cur) to 18.3% (Z/T-Cur1:1), and from 4.7% (Zein-Cur) to 20.0% (Z/T-Cur1:1), respectively. The Z/T-Cur significantly alleviated colitis symptoms in DSS-treated mice. Additionally, the prepared nanocomplexes rebalanced the gut microbiota composition of colitis mice by increasing the abundance of Akkermansia. Odoribacter and Monoglobus were rich in the Z-T-Cur treatment group, and Turicibacter and Bifidobacterium were rich in the zein-TSP treatment group. This study demonstrated that the TSP could be helpful in the targeted drug delivery system.


Assuntos
Colite , Curcumina , Microbioma Gastrointestinal , Nanopartículas , Tamarindus , Zeína , Animais , Camundongos , Curcumina/química , Zeína/química , Nanopartículas/química , Disbiose/tratamento farmacológico , Polissacarídeos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Tamanho da Partícula
8.
Int J Biol Macromol ; 261(Pt 2): 129790, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307431

RESUMO

Cellulose nanofiber (CNF) reinforced hydroxypropyl methylcellulose (HPMC) films were functionalized with propolis-loaded zein nanoparticles (ZNP) to develop active, printable, and heat-sealable films. The films with 0, 0.10, 0.25, 0.50, or 0.75 mg/mL propolis-loaded ZNP, named 0ZNP, 0.10ZNP, 0.25ZNP, 0.50ZNP, and 0.75ZNP, respectively, were characterized for their mechanical, physicochemical, structural, functional and optical properties and antioxidant activity. The addition of propolis-loaded ZNP did not change tensile strength (P > 0.05), but increased elongation at break (from 24.72 to 36.58 %) (P < 0.05) for 0.25ZNP film. A water contact angle increased significantly (P < 0.05) for 0.50ZNP (~45 %) and 0.75ZNP (~137 %) films. The 0.25ZNP and 0.75ZNP films were evaluated for packaging cheddar cheese under refrigerated storage for 30 days, and resulted in comparable water activity, pH, titratable acidity, and lipid oxidation (P > 0.05) with those packaged by LDPE film and vacuum package. The developed films can function as eco-friendly alternatives to single-use plastic food packaging.


Assuntos
Queijo , Nanofibras , Nanopartículas , Compostos Organometálicos , Própole , Piridinas , Zeína , Derivados da Hipromelose , Zeína/química , Nanofibras/química , Embalagem de Alimentos/métodos , Água , Nanopartículas/química
9.
Int J Biol Macromol ; 261(Pt 2): 129948, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311140

RESUMO

In present study, we characterized the formation, interfacial rheology, and storage stability of emulsions stabilized by microendosperm maize-derived zein (M-Zein)/whey protein isolate fiber (WPIF) nanoparticles. Microendosperm maize is a newly developed, oleic acid-rich oilseed resource. Recent research has shown that M-Zein possesses unique hydrophobic properties. Combining it with WPIF may enhance its performance as a stabilizer. Optimization of weight ratios for M-Zein/WPIF composites, guided by particle size analysis, fluorescence spectroscopy, three-phase contact angle (θ), and interfacial rheological analysis, revealed that a 4: 6 mass ratio at pH 7 yielded favorable wettability (θ = 91.2°). Interfacial rheology analysis showed that the combination of WPIF reduced M-Zein's interfacial tension to 7.2 mN/m and 36.7 mN/m at oil-water and air-water interfaces, respectively. The M-Zein/WPIF complex exhibited an elastic protein layer at the oil-water interface. Further investigations into nanoparticle concentration, oil phase volume, and pH revealed that emulsions containing 3 % nanoparticles (w/w), 50 % oil phase volume, and pH 7 showed the best storage stability. This research highlights the development of M-Zein/WPIF composited nanoparticles with superior storage stability and interfacial rheology. Additionally, it introduces a novel application for M-Zein, which elevates the value proposition of microendosperm maize.


Assuntos
Nanopartículas , Zeína , Emulsões/química , Zeína/química , Zea mays , Proteínas do Soro do Leite , Endosperma , Tamanho da Partícula , Reologia , Água/química , Nanopartículas/química
10.
Food Chem ; 444: 138634, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38330608

RESUMO

Quercetin, an essential flavonoid compound, exhibits diverse biological activities including anti-inflammatory and antioxidant effects. Nevertheless, due to its inadequate solubility in water and vulnerability to degradation, pure quercetin is constrainedly utilized in pharmaceutical formulations and functional foods. Considering the existing scarcity of nanoparticles consisted of zein and hydrophobic biopolymers, this study developed a quercetin-loaded nanoencapsulation based on zein, shellac, and chitosan (QZSC). When the mass ratio of zein to chitosan was 4:1, the encapsulation efficiency of QZSC reached 74.95%. The ability of QZSC for scavenging DPPH radicals and ABTS radicals increased from 59.2% to 75.4% and from 47.0% to 70.2%, respectively, compared to Quercetin. For QZSC, the maximum release amount of quercetin reached 59.62% in simulated gastric fluid and 81.64% in simulated intestinal fluid, achieving controlled and regulated release in vitro. In summary, this study offers a highly promising encapsulation strategy for hydrophobic bioactive substances that are prone to instability.


Assuntos
Quitosana , Nanopartículas , Resinas Vegetais , Zeína , Quercetina/química , Zeína/química , Quitosana/química , Preparações de Ação Retardada/química , Nanopartículas/química , Tamanho da Partícula
11.
Nanomedicine (Lond) ; 19(5): 367-382, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305304

RESUMO

Aim: The present research focused on development and optimization of ligand decorated theranostic nanocarrier encapsulating paclitaxel and carbon quantum dots (CQDs). Methods: CQDs were prepared by microwave-assisted pyrolysis and were characterized for particle size and fluorescence behavior. Ligand decorated zein nanoparticles, coloaded with paclitaxel and CQDs, were formulated using a one-step nanoprecipitation method and optimized for various process parameters. Results: Particle size for coated and uncoated nanoparticles was 90.16 ± 1.65 and 179.26 ± 3.61 nm, respectively, and entrapment efficiency was >80%. The circular dichroism spectroscopy showed zein retained its secondary structure and release study showed biphasic release behavior. Conclusion: The prepared theranostic nanocarrier showed optimal fluorescence and desired release behavior without altering the secondary structure of zein.


Assuntos
Nanopartículas , Pontos Quânticos , Zeína , Pontos Quânticos/química , Paclitaxel/química , Zeína/química , Medicina de Precisão , Carbono/química , Ligantes , Nanopartículas/química
12.
Food Res Int ; 178: 113944, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309870

RESUMO

In this study, electrospun zein/alginate dialdehyde (AD) nanofibers were prepared by green crosslinking. The degree of crosslinking could reach 50.72 %, and the diameter of electrospun fibers ranged from 446.2 to 541.8 nm. The generation of AD and the bonding of crosslinking were further confirmed by the changes on characteristic peaks and conformational ratios in the infrared spectroscopy and secondary structure analysis. High concentrations of AD led to improved thermal stabilities, mechanical properties, and hydrophobicity. And the highly crosslinked nanofibers (Z-8) owned the highest elastic modulus (24.92 MPa), tensile strength (0.28 MPa), and elongation at break (8.14 %) among five samples. Moreover, Z-8 possessed a high swelling ratio of 5.45 g/g, and a low weight loss of 6.09 %. The samples could encapsulate curcumin efficiently and show controllable release behaviors based on different AD addition. And the oxidation resistance of nanofibers gradually improved, consistent with the release performances. This study indicated AD crosslinking favored the preparation and application of zein nanofibers, and the oxidized polysaccharide acted as the green crosslinking agent, which provided reference value for the application of polysaccharides in food-related electrospun materials.


Assuntos
Curcumina , Nanofibras , Zeína , Zeína/química , Alginatos , Nanofibras/química , Resistência à Tração
13.
Int J Biol Macromol ; 263(Pt 1): 130412, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401577

RESUMO

The purpose of this study was to compare and characterize the theoretical properties and interaction mechanisms of zein and isoquercetin (ISO) from experimental and theoretical perspectives. Zein nanoparticles with different ISO concentrations (ZINPs) were prepared by the antisolvent precipitation method. The experimental results indicated all particles appeared spherical. When the mass ratio of zein to ISO was 10:1, the encapsulation efficiency of ZINPs reached 88.19 % with an average diameter of 126.67 nm. The multispectral method and molecular docking results confirmed that hydrogen bonding and van der Waals force played a dominant role for the binding of ISO to zein, and the primary fluorescence quenching mechanism for zein by ISO was static quenching. Furthermore, ZINPs had greater solubility and antioxidant activity, as well as inhibited the release of ISO during simulated gastrointestinal digestion processes. This research contributes to the understanding of the non-covalent binding mechanism between zein and ISO, providing a theoretical basis for the construction of ISO active carriers.


Assuntos
Nanopartículas , Quercetina/análogos & derivados , Zeína , Antioxidantes/farmacologia , Zeína/química , Simulação de Acoplamento Molecular , Tamanho da Partícula , Nanopartículas/química
14.
Int J Biol Macromol ; 262(Pt 1): 130070, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340944

RESUMO

This study aimed to prepare carrageenan/sodium alginate double-stabilized layers of zein nanoparticles loaded with daidzein using ultrasound technology to investigate the effect of ultrasound treatment on the stability of composite nanoparticles and encapsulation of daidzein. Compared with composite nanoparticles without ultrasound treatment, the encapsulation efficiency of nanoparticles was increased (90.36 %) after ultrasound treatment (320 W, 15 min). Ultrasound treatment reduced the particle size and PDI of nanoparticles and improved the stability and solubility of nanoparticles. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed that the nanoparticles treated with ultrasound were smooth spherical and uniformly distributed. Fourier transform infrared spectroscopy (FTIR) results showed that the main forces that form nanoparticles are hydrogen bonding, electrostatic interactions and hydrophobic interactions. Fluorescence and CD chromatography showed that ultrasound treatment alters the secondary structure of zein and maintains nanoparticle stability. Encapsulation of daidzein in nanocarriers with ultrasound treatment can effectively scavenge DPPH and ABTS free radicals, improve antioxidant activity, and realize the slow release of daidzein in the gastrointestinal tract. The results showed that ultrasonication helps the construction of hydrophobic bioactives delivery carriers and provides better protection for unstable bioactives.


Assuntos
Isoflavonas , Nanopartículas , Zeína , Zeína/química , Carragenina , Alginatos , Nanopartículas/química , Tamanho da Partícula
15.
Biomed Mater ; 19(2)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38364281

RESUMO

Development of wound dressings with enhanced therapeutic properties is of great interest in the modern healthcare. In this study, a zein-based nanofibrous wound dressing containing curcumin as a therapeutic agent was fabricated through electrospinning technique. In order to achieve desirable properties, such as antibacterial characteristics, reduced contact angle, and enhanced mechanical properties, the layer-by-layer technique was used for coating the surfaces of drug-loaded nanofibers by sequentially incorporating poly (sodium 4-styrene sulfonate) as a polyanion and poly (diallyldimethylammonium chloride) (PDADMAC) as a polycation. Various analyses, including scanning electron microscopy, Fourier transform infrared spectroscopy, drug release assessment., and mechanical tests were employed to assess the characteristics of the prepared wound dressings. Based on the results, coating with polyelectrolytes enhanced the Young's modulus and tensile strength of the electrospun mat from 1.34 MPa and 4.21 MPa to 1.88 MPa and 8.83 MPa, respectively. The coating also improved the controlled release of curcumin and antioxidant activity, while the outer layer, PDADMAC, exhibited antibacterial properties. The cell viability tests proved the appropriate biocompatibility of the prepared wound dressings. Moreover, our findings show that incorporation of the coating layers enhances cell migration and provides a favorable surface for cell attachment. According to the findings of this study, the fabricated nanofibrous wound dressing can be considered a promising and effective therapeutic intervention for wound management, facilitating the healing process.


Assuntos
Curcumina , Nanofibras , Polietilenos , Compostos de Amônio Quaternário , Zeína , Nanofibras/química , Zeína/química , Bandagens/microbiologia , Antibacterianos/química
16.
Int J Biol Macromol ; 260(Pt 1): 129416, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224810

RESUMO

Zein, a protein-based biopolymer derived from corn, has garnered attention as a promising and eco-friendly choice for packaging food due to its favorable physical attributes. The introduction of electrospinning technology has significantly advanced the production of zein-based nanomaterials. This cutting-edge technique enables the creation of nanofibers with customizable structures, offering high surface area and adjustable mechanical and thermal attributes. Moreover, the electrospinning process allows for integrating various additives, such as antioxidants, antimicrobial agents, and flavoring compounds, into the zein nanofibers, enhancing their functionalities for food preservation. In this comprehensive review, the various electrospinning techniques employed for crafting zein-based nanofibers, and we delve into their enhanced properties. Furthermore, the review illuminates the potential applications of zein nanofibers in active and intelligent packaging materials by incorporating diverse constituents. Altogether, this review highlights the considerable prospects of zein-based nanocomposites in the realm of food packaging, offering sustainable and innovative solutions for food industry.


Assuntos
Nanocompostos , Nanofibras , Zeína , Nanofibras/química , Embalagem de Alimentos , Zeína/química , Nanotecnologia/métodos
17.
Int J Biol Macromol ; 260(Pt 1): 129463, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237820

RESUMO

Tanshinone compounds are secondary metabolites which their application in food and pharmaceutical industry is limited due to the low solubility in water and sensitivity to heat. This study aimed to develop a novel biopolymer nanocarriers system based on pectin/zein for the encapsulation of tanshinone compounds using the anti-solvent precipitation method. The concentration of pectin and mass ratio of tanshinone/zein in the final formulation of nanoparticles were optimized. According to the results, a pectin concentration of 1 g/L and a tanshinone/zein ratio of 0.1:1 g/g were considered the optimal nanoparticle formulation. The resulting nanoparticles exhibited a spherical core-shell structure, with approximate values for size, zeta potential, TSI, and encapsulation efficiency of 132 ± 0.002 nm, -38.6 ± 0.019 mV, 0.600 ± 0.084, and 79.41 ± 0.62 %, respectively. The FTIR test confirmed the presence of hydrophobic, hydrogen, and electrostatic interactions among the constituents within the nanoparticles. Additionally, XRD and DSC tests verified the amorphous nature of the nanoparticles. Morphological examination conducted through TEM, and SEM revealed the characteristics of the resulting nanoparticles. Furthermore, this carrier system significantly enhanced the solubility of tanshinone compounds in water.


Assuntos
Abietanos , Nanopartículas , Zeína , Pectinas/química , Solventes , Zeína/química , Tamanho da Partícula , Água , Nanopartículas/química
18.
J Agric Food Chem ; 72(7): 3707-3718, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38268446

RESUMO

Protein particle-stabilized emulsions often lack thermal stability, impacting their industrial use. This study investigated the effects of genipin (GP)-zein cross-linked particles with varying GP-to-protein weight ratios (0/0.02/0.1:1) on emulsion thermal stability. Enhanced stability was observed at the GP level of 0.1. Heat treatment increased the covalent cross-linking in raw particles and emulsions. Isolated particles from heated emulsions grew in size (micrometer scale) with higher GP levels, unlike heated raw particles (nanoscale). GP-protein cross-linking reduced the droplet-droplet and particle-emulsifier interactions in the heated emulsion. Spectroscopic analysis and electrophoresis revealed that GP-zein cross-linking increased protein structural stability and inhibited nondisulfide and non-GP cross-linking reactions in heated emulsions. The GP-zein bridges between particles at the oil-water interface create strong connections in the particle layer (shell), referred to as "particle-shell locking", enhancing the thermal stability of emulsion significantly. This insight aids the future design of protein-particle-based emulsions, preserving properties like aeratability during thermal processing.


Assuntos
Iridoides , Zeína , Emulsões/química , Zeína/química , Tamanho da Partícula , Emulsificantes/química
19.
J Sci Food Agric ; 104(4): 1942-1952, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37886811

RESUMO

BACKGROUND: Composite nanofiber films loaded with ε-polylysine (PL) and gallic acid (GA) were prepared using a zein/gelatin (ZG) electrospinning method to develop effective active packaging films for tuna preservation. The morphology, structure, thermal stability, hydrophobicity, antibacterial, and antioxidant properties of the films, and their application for tuna during a period of storage of 4 °C were investigated. RESULTS: PL reduced the average diameter of ZG fibers, whereas GA increased it. The PL/GA/ZG film possessed a well distributed fiber morphology with an average diameter of 810 ± 150 nm. Fourier-transform infrared spectroscopy and X-ray diffraction results showed the physical loading of PL and GA in ZG film with the main chemical bonds and crystal structure unchanged. The addition of both PL and GA reduced hydrophobicity of the ZG film while the PL/GA/ZG film was still hydrophobic. GA enhanced its thermal stability and contributed to its antioxidant activity. PL and GA synergetically enhanced the antibacterial activity of ZG film against Shewanella putrefaciens. PL combined with GA is more suitable for modifying ZG film than GA alone. The PL/GA/ZG film effectively inhibited total viable counts, total volatile base nitrogen, fat oxidation, and texture deterioration of tuna fillets at 4 °C storage, and could extend the shelf life by 3 days. CONCLUSIONS: The PL/GA/ZG nanofiber film demonstrated promising potential for application in the preservation of aquatic products as a new antibacterial and antioxidant food packaging. © 2023 Society of Chemical Industry.


Assuntos
Ácido Gálico , Zeína , Animais , Ácido Gálico/química , Antioxidantes/química , Zeína/química , Polilisina/farmacologia , Atum , Gelatina , Antibacterianos/farmacologia , Antibacterianos/química , Embalagem de Alimentos/métodos
20.
Int J Biol Macromol ; 256(Pt 1): 128456, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016606

RESUMO

This study aimed to fabricate and characterize the Ca-alginate films functionalized by incorporating zein nanoparticles containing cinnamaldehyde (CA). The zein nanoparticles were coated with Na-caseinate (CN) to inhibit the precipitation of zein in the alginate solution. Afterward, the physical, mechanical, morphological, and barrier properties of the nanocomposite films were evaluated. The particle sizes of different zein nanoparticles (with/without CA and CN) ranged between 43.58 and 251.66 nm. The addition of free CA, zein, and CN nanoparticles significantly increased the thickness, opacity, thermal stability, and water contact angle and improved the mechanical properties of the films. The water vapor permeability was not affected but the antimicrobial activity was improved on fresh-cut apples. The lightness of nanocomposite films decreased and the yellowness and greenness increased. According to SEM and AFM images, a dense and organized interlayer arrangement with a rougher surface was detected in the nanocomposite films. FTIR analysis showed that no new interactions were formed between the Ca-alginate and zein/CN nanoparticles. An excellent sustained CA release into the water was observed for the CA/zein nanoparticles-loaded alginate films. Overall, the results showed that Ca-alginate nanocomposite films of zein nanoparticles have good potential to carry hydrophobic bioactive compounds for specific pharmaceutical and food applications.


Assuntos
Acroleína/análogos & derivados , Nanopartículas , Zeína , Alginatos/química , Zeína/química , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...